

Зачем (и как) изучать органические соединения методами термического анализа?

Никита Муравьев

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Больше, чем т.пл.

Hashimoto, Ohta, BCSJ 1962, 35, 766

$$-N^{N}O$$

A solution of IV in absolute ethanol was refluxed for 3 hr. and evaporated under reduced pressure to give colorless needles, m. p. 11°C, giving a negative test with the Liebermann nitroso reaction.

Больше, чем т.пл.

Hashimoto, Ohta, BCSJ 1962, 35, 766

$$-N_{N}^{N}$$

A solution of IV in absolute ethanol was refluxed for 3 hr. and evaporated under reduced pressure to give colorless needles, m. p. 11°C, giving a negative test with the Liebermann nitroso reaction.

Методы

- Термогравиметрический анализ
 - ТГА при пониженном давлении
 - ТГА+анализ выделяющихся газов
- Дифференциальная сканирующая калориметрия
 - ДСК при повышенном давлении
 - ДСК+видеорегистрация
- Адиабатическая реакционная калориметрия

Открытое ПО для термокинетического анализа

(chemphys.space/thinks)

Термическое поведение (пример)

(1) Плавление/чистота в-в

Плавление 35-ДНП

Чистота по ДСК: Теория

Figure 11.3

Low concentration region of a simple eutectic phase diagram (inset) [2]. By the lever rule: BC/AB = $n_{\text{solid}}/n_{\text{liquid}}$. C is the composition of the melt in equilibrium with pure solid at T. Here $x_2 > x_2^*$. $F = n_{\text{e}}/(n_{\text{e}} + n_{\text{s}}) = \text{AB}/(\text{AB} + \text{BC}) = \text{AB/BC} = x_2^*/x_2$. (With the permission of the Journal of Chemical Education.)

Brown, J. Chem. Educ., 1979; TN002, TA Instruments; Sovocool, TA, 1990

Чистота по ДСК: Теория

Fig. 3. Effect of added impurity on DSC thermogram.

- Чистота > 95 мол.%
- Примеси не должны образовывать твердые растворы с основным веществом
- Образец не должен разлагаться при плавлении (хотя...)
- Примеси растворимы в жидкой фазе основного вещества
- Нет других термических эффектов в районе температуры плавления (испарения или дополнительных фазовых переходов)

Чистота по ДСК: Анализ

Temperature, °C

References:

1. R. Blaine and C. Schoff, eds., Purity Determinations by Thermal Methods, (ASTM International, 1984), https://doi.org/10.1520/STP838

Thin-out data:

O ves O no

Dr. Nikita V. Muravyev, Version 01.07.20

Download codes or feedback / Cite / Mailto

Качественное определение чистоты: Летучие примеси

Часто мы при анализе выделяющихся газов мы регистрируем растворитель на начальном участке нагрева, либо при плавлении...

Качественное определение чистоты: Летучие примеси

...но иногда и реагенты

(1.2) Поиск сокристаллов

Мультикомпонентные кристаллы

- Сокристалл это кристаллический материал, который содержит два или более индивидуальных соединения в стехиометрическом соотношении*
- Методы, о которых пойдет речь, применимы и к солям

^{*} Aitipamula, S. et al Cryst. Growth Des. 2012, 2147; Lara-Ochoa, F.; Espinosa-Pérez, G. Supramol. Chem. 2007, 553

Термический анализ для поиска сокристаллов

(1) Фазовые диаграммы ~2 К/ч

Yamashita et al Pharm Res 2014

Composition (%)

(2) Hot-Stage Microscopy ~1 К/мин

XI. Flurbiprofen: nicotinamide displaying polymorphism
 Phases; A= Nicotinamide polymorph B= Nicotinamide polymorph
 C= New phase (central in melt zone) D= Flurbiprofen
 (71.9°C)

Berry et al Cryst. Growth Des. 2008

(3) Скрининг с помощью ДСК ~10 K/мин

Fig. 1 DSC heating curves of (a) salicylic acid (SAA), (b) caffeine (CAF) and (c) CAF-SAA cocrystal prepared by the slurry method. The curves (d), (e) and (f) are physical mixtures of CAF and SAA at 1:2, 1:1 and 2:1 molar ratios respectively.

Lu et al CrystEngComm 2008

- Быстрота
- Без растворителей
- Малое количество образца

Оба маркера образования сокристалла

Один маркер

Нет маркеров: Модификация метода

Обобщенная процедура скрининга

(2) Испарение

ИК-спектр газовой фазы

Термогравиметрический метод

$$\frac{\mathrm{d}m}{\mathrm{d}t} = p\alpha \sqrt{\frac{M}{2\pi RT}}$$

$$p = kv$$

where $k = \sqrt{2\pi R}/\alpha$ and $v = (dm/dt)\sqrt{T/M}$.

Price, Thermochimica Acta 622, 44 (2015)

<u>Muravyev et al. Thermochimica Acta 690, 178697 (2020)</u>

Испарение по ТГА: Энтальпия

«Вакуум» vs атмосфера

Phys. Chem. Chem. Phys., 23, 15522 (2021)

Расширение «температурного окна»

Верификация термохим.результатов

ТГА: Давление насыщенного пара

$$p = kV$$
 where $k = \sqrt{2\pi R}/\alpha$ and $v = (dm/dt)\sqrt{T/M}$.

ТГА: Давление насыщенного пара

$$p = k V$$
 where $k = \sqrt{2\pi R}/\alpha$ and $v = (dm/dt)\sqrt{T/M}$.

ТГА: Давление насыщенного пара

$$p = kV$$
 where $k = \sqrt{2\pi R}/\alpha$ and $v = (dm/dt)\sqrt{T/M}$.

Можно использовать данные о температуре кипения от «синтетиков» для проверки (точки на графике)

(3) Термическое разложение

Миф №1: Если на ДСК нет экзоэффекта, вещество неопасно

"Because the decomposition of ADT is an endothermal process ($\Delta H = 30.3$ kJ/mol), ADT is intrinsically nonexplosive, as proved by thermal, friction, and impact tests"

[J. Org. Chem. 2018, 83, 10916]

Миф №1: Если на ДСК нет экзоэффекта, вещество неопасно

"Because the decomposition of ADT is an endothermal process ($\Delta H = 30.3$ kJ/mol), ADT is intrinsically nonexplosive, as proved by thermal, friction, and impact tests"

[J. Org. Chem. 2018, 83, 10916]

Diazo Transfer Reagent ADT

Diazo-Transfer Reagent 2-Azido-4,6-dimethoxy-1,3,5-triazine Displays Highly Exothermic Decomposition Comparable to Tosyl Azide

Sebastian P. Green, †,‡ Andrew D. Payne, $^{\$}$ Katherine M. Wheelhouse, $^{\parallel}$ Jason P. Hallett, $^{*,\ddagger_{\odot}}$ Philip W. Miller, $^{*,\dagger_{\odot}}$ and James A. Bull*, †

PDSC vs SC-DSC

Давление до 150 атм в печи

Более высокая
 чувствительность

- Постоянное и известное давление
- Нет остаточного воздуха

«Подавить» испарение

Миф №2 «Температура начала распада»?

Energetic Materials

International Edition: DOI: 10.1002/anie.201601432
German Edition: DOI: 10.1002/ange.201601432

Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate: A Highly Energetic 3D Metal-Organic Framework as a Promising Primary Explosive

Yongxing Tang, Chunlin He, Lauren A. Mitchell, Damon A. Parrish, and Jean'ne M. Shreeve*

Abstract: Environmentally acceptable alternatives to toxic lead-based primary explosives are becoming increasingly important for energetic materials. In this study, potassium 4,4'-bis(dinitromethyl)-3,3'-azofurazanate, comprising two dinitromethyl groups and an azofurazan moiety, was synthesized and isolated as a new energetic 3D metal-organic framework (MOF). Several attractive properties, including a density of 2.039 g cm⁻³, a decomposition temperature of 229°C, a detonation velocity of 8138 m s⁻¹, a detonation pressure of 30.1 GPa, an impact sensitivity of 2 J, and friction sensitivity of 20 N make **4** a good candidate as a green primary explosive.

Миф №2 «Температура начала распада»?

onset TKX-50 – 221°C onset RDX – 210°C

Вывод: ТКХ-50 более термостоек, чем RDX

Миф №2 «Температура начала распада»?

- Начало процесса определяется кинетикой и чувствительностью прибора
- Чтобы прогнозировать термостабильность нужно знать кинетические параметры

(3.1) Кинетический анализ

Термический анализ (методы)

Понимание процесса

Данные

Кинетические подходы

Хорошие данные критически важны

- 1. Повторяемость
- 2. Эффекты массы образца
- 3. Закрытый/открытый тигель
- 4. Максимально широкий температурный интервал

. . .

См. рекомендации кинетического комитета ICTAC-<u>2014</u>, <u>2023</u> <u>Thermo 2022</u>, <u>2(4)</u>, <u>435</u>

Используйте малые массы и скорости нагрева

- Простой критерий амплитуда сигнала < 8 mW [*ASTM E698*], мы выбираем массы/скорости, чтобы DSCmax = 3-4 mW
- Есть и более сложные [Farjas et al. 2014]:

$$m_{crit} = \rho \left[\frac{5 \cdot 10^{-5}}{C} \frac{c_p \chi E_a}{Rq} \frac{2.446}{A \exp(-E_a/RT_{\text{max}})} \right]^{3/2}$$

Используйте малые массы и скорости нагрева

Даже небольшой саморазогрев образца может приводить к ошибкам определения кинетических параметров

Методы термокинетики

$$\frac{d\alpha}{dt} = k(T)f(\alpha)$$

- Метод Киссинджера
- Изоконверсионные подходы (Friedman, Vyazovkin)
- Модель-обусловленные (model-fitting, Burnham)
- Кинетическая деконволюция (Koga)
- Математическая деконволюция (Perez-Maqueda)
- Распределенная реактивность (Burnham, Cai)

. . .

- Непараметрический кинетический анализ (Sempere)
- Анализ с помощью нейросетей (Conesa, Muravyev)

Выбор метода термокинетики

А.Дюрер, Колесо Фортуны

Общий подход к выбору метода?

Пример кинетического анализа

Расчеты в разработанной программе с открытым кодом (chemphys.space/thinks)

Пример-1: Бицикло-НМХ

- Хорошее описание моделью с двумя независимыми стадиями
- Кинетические параметры для стадий практически совпадают, модели реакции разные

Model name	C
Sample	Solid
Data	Noniso
Kinetic scheme ^a	ePT + ePT
$\log(A_1, s^{-1})$	17.3 ± 0.2
$E_{\rm a1}$, kJ mol ⁻¹	188.3 ± 0.2
n_1	0.56 ± 0.02
m_1	0.60 ± 0.02
$\log(A_2, s^{-1})$	17.5 ± 0.1
$E_{\rm a2}$, kJ mol ⁻¹	184.4 ± 0.2
n_2	0.40 ± 0.02
m_2	1.08 ± 0.02
$\log(A_3, s^{-1})$	_
E_{a3} , kJ mol ⁻¹	_
n_3	_
m_3	_
w_1^{b}	0.86 ± 0.01
w_{21}^{b}	_
w_{22}^{c}	_
BIC^{d}	-30,374

«Стадийность» по видео

- Ранние стадии процесса измельчение частиц (а-с)
- Затем изменение цвета без изменения морфологии (d-e)

Две последовательных стадии

"Стадийность" по анализу выделяющихся газов

Эффект скорости нагрева

Есть и конкурирующие реакции!

Объединяя всё вместе

- Первоначальная модель с независимыми стадиями
- Последовательность превращений
- Также и конкурирующие стадии

Solid
Noniso
$KJMAE \rightarrow ePT \parallel ePT$
16.7 ± 0.3
186.6 ± 1.2
3 ^e
_
17.3 ± 0.2
182.5 ± 1.1
0.29 ± 0.02
1^{e}
17.7 ± 0.6
196.2 ± 2.7
0.27 ± 0.02
0^{e}
0.48 ± 0.05
1.22 ± 0.16
0.95 ± 0.05
-31,012

Некоторые следствия модели

Описывает ли модель наблюдаемые эффекты массы навески?

Да, изменение вклада автокаталитического канала

B → **C** позволяет описать

экспериментальные ДСК сигналы

Сравнение с литературой

State	Source	$E_{\rm a}/{\rm kJ~mol^{-1}}$	$\log(A, \mathrm{s}^{-1})$	k(200 °C)/s ⁻¹	ΔT/°C	Method
Solution ^a	[16]	170	15.77	1.0×10^{-3}	145–190	Manometry ($P < 0.1 \text{ MPa}$)
Solution ^b	[16]	165	14.96	5.5×10^{-4}	140–185	Manometry ($P < 0.1 \text{ MPa}$)
Solution ^c	[18]	159	14.8	1.8×10^{-3}	150–180	Manometry $(P > 0.1 \text{ MPa})$
Liquid	[3]	194.4	17.31	7.1×10^{-5}	377–532	Combustion tests
Solid	[16]	210.2	18	6.2×10^{-6}	180-200	Manometry ($P < 0.1$ MPa)
Solid	[18]	163.4	12.87	6.8×10^{-6}	140-160	Manometry ($P > 0.1 \text{ MPa}$)
$Solid^d$	[21]	233	23.05	2.1×10^{-3}	200-230	TGA at 2–10 K min ⁻¹
Solid ^e	[21]	186.1	16.73	1.5×10^{-4}	230-260	TGA at 2–10 K min ⁻¹
Solid	[22]	229.3	21.72	2.5×10^{-4}	200–250	TGA at 2–16 K min ⁻¹

При очень высоких скоростях нагрева модель редуцируется к $\mathbf{A} \to \mathbf{D}$ Кинетические параметры этой стадии $E_a = 196 \pm 3 \text{ кДж/моль, } \log(A, \text{ c}^{-1}) = 17.7 \pm 0.6$ согласуются с данными, полученными в волне горения

Пример-2: АТНП

В чем причина автокатализа?

Видео-приставка к ДСК

«Автокатализ» по Боуну

Соответствую щий ДСК сигнал

Температура плавления

Ширина кадра 1.9 мм

«Автокатализ» по Боуну

Ускорение процесса вследствие прогрессивного «ожижения» образца Bawn in Chemistry of the Solid State (1955)

$$\frac{d\alpha}{dt} = k_{s}(1 - \alpha - \alpha S) + k_{l}S\alpha = k_{s} + K_{B}\alpha, \qquad (1)$$

$$\frac{d\alpha}{dt} = k_{l}(1 - \alpha), \qquad (2)$$

Parameters/model	Model B
Kinetic scheme ^a	Bawn (ePT/ePT) → ePT
$log(A_1, s^{-1})$	$13.8 \pm 0.1/13.5 \pm 0.1$
E_{a1} , kJ mol ⁻¹	$140.6 \pm 0.3/140.6^{c}$
n_1	$0^{c}/1^{c}$
m_1	$1^{c}/0^{c}$
q_1	0.999
$\log(A_2, s^{-1})$	11.5 ± 0.2
E_{a2} , kJ mol ⁻¹	116.8 ± 2.3
n_2	2.4 ± 0.1
m_2	0.73 ± 0.02
q_2	1
w_1^b	0.57 ± 0.02
-	

Анализ выделяющихся газов

Раннее появление NH₃ – диссоциация соли

Phys. Chem. Chem. Phys., 23, 11797 (2021)

Причина «ожижения»

Механизм разложения АТНП

Процесс начинается с диссоциации соли: R1

$$ATNP \rightarrow NH_3 + TNP$$

TNP образует эвтектическую смесь с ATNP (формальная реакция **R2** при этом эвтектика менее термически стабильна, чем оба продукта

Термораспад эвтектики (реакция **R3**) газовые продукты как HNCO и CO₂ означающие разрушение пиразольного кольца

Low-T stage

$$A(s) \xrightarrow{k_{s,1}} B + L \quad (R1) \text{ initial solid-state reaction}$$

$$A(s) + L \rightarrow A(l) + L \quad (R2) \text{ liquefaction}$$

$$A(l) \xrightarrow{k_{l,1}} B + L \quad (R3) \text{ liquid-state reaction}$$

$$L + C \xrightarrow{k_2} 2C + D \quad (R4) \text{ second peak of low-T stage}$$

$$D \xrightarrow{k_3} E + F \quad (R5)$$
High-T stage

Phys. Chem. Chem. Phys., 23, 11797 (2021)

В «Боуновской» кинетике нет ускорения при переходе через т.пл.

...но часто ускорение есть

J. Phys. Chem. B 2020, 124, 11197

PCCP, 2023,25, 3666

Тормозящий эффект кристаллической решетки [Manelis et al, Russ Chem Bull, 2001, 60, 1440]: $K_{liq} / K_{sol} \sim 100$

Плавление с разложением

Подходы к кинетическому анализу:

- Математическое вычитание эндопика
- Формальная реакция для плавления
- Анализ ТГА-данных с ускорением после плавления. Задается triggering temperature, ниже которой предэкспонент уменьшается в 100 раз

J. Phys. Chem. B 2020, 124, 11197

Кинетическое моделирование нескольких ТА сигналов

Phys. Chem. Chem. Phys., 2023,25, 3666

(3.2) Кинетические параметры

Прогноз vs. эксперимент

Сравнение предсказания с помощью кинетической модели с экспериментом, не использованным для моделирования

Thermochimica Acta 690, 178697 (2020)

PCCP 19(1), 436 (2017)

Кинетический компенсационный эффект

Грамотный выбор условий эксперимента и метода анализа позволяют уменьшить ККЭ и повысить точность кинетических результатов (<u>ICTAC</u> recommendations-2023)

Верификация модели-2

Кин. модель:
$$E_{\rm a} = 41.0 \ {\rm ккал/моль}$$

Газовые продукты: NO_2 и N_2O

HOON
$$O_{2}N \longrightarrow C \longrightarrow C$$

$$O_{2}N \longrightarrow C$$

$$O_{2}N \longrightarrow C \longrightarrow C$$

$$O_{2}N \longrightarrow C$$

$$O_{2}N$$

Высокоточные квантовохимические расчеты $C = \frac{H_{N-NO_2}}{V_0} + \frac{V_0}{V_0} = \frac{V_0}{V_0} + \frac{V_0}{V_0} = \frac{V_$

Возвращаясь к заглавному вопросу

Reaxys:

Melting Point,	Solvent (Melting
°C	Point)
91	dichloromethane

Возвращаясь к заглавному вопросу

Phys. Chem. Chem. Phys., 20, 29285, (2018)

Общие советы

- «Творчески» применяйте методы термоанализа (пр., поиск сокристаллов, использование пониженного давления)
- Совместное (и грамотное) использование методов ТА позволяет увидеть больше
- При этом никакой прибор не заменит необходимость понимания процесса и аккуратности постановки эксперимента
- Используйте разработанные приложения с открытым кодом (<u>chemphys.space/thinks</u>)